rohola zandie
خواندن ۸ دقیقه·۲ ماه پیش

نردبان شهود

جمله ی مشهوری از آلفرد نورث وایتهد می‌گوید: «تمدن با گسترش تعداد عملیاتی که می‌توانیم بدون اندیشیدن دربارهٔ آن‌ها انجام دهیم، پیشرفت می‌کند.» در این زمینه، «عملیات» باید فراتر از محاسبات صرف تفسیر شود. توسعۀ ابزارهای ریاضی که به ما در اجتناب از وظایف تکراری کمک می‌کنند، نقطۀ آغاز این عملیات را در تاریخ رقم می‌زند.

برای مثال، ما در مدرسه با لگاریتم‌ها آشنا می‌شویم بی‌آنکه بدانیم در ابتدا چنین محاسباتی از نیازهای ناوبری دریانوردان سرچشمه گرفته‌ بودند. لگاریتم به آن‌ها امکان محاسبۀ سریع‌تر برای سفرهای طولانی را می‌داد. کتاب Mirifici Logarithmorum Canonis Descriptio نوشتۀ جان نَپیر درقرن ۱۶ میلادی محصول تلاش خستگی ناپذیر و مادام العمر او برای تهیۀ جداول لگاریتم بود. این جداول بعدها نه‌تنها توسط دریانوردان، بلکه در صنایع گوناگونی که به محاسبات سریع نیاز داشتند نیز به کار رفت. این جدول بزرگترین کامپیوتر زمان خود بود که راه تمدن غرب را برای ابزار سازی، سلاح و ناوبری دریایی و در نهایت عصر اکتشاف و چیرگی را فراهم کرد.

دنباله ی چنین ابزارهایی درنهایت با اختراع رایانه‌های دیجیتال، بشر را توانست بر سطح کرۀ ماه فرود آورد. اگرچه در اینجا چندان به تاریخ محاسبات نمی‌پردازیم، اما آشکار است که هر ابزار جدیدی که مجموعۀ خاصی از عملیات را بر عهده می‌گیرد، ما را از انجام دستی آن‌ها بی‌نیاز کرده و راه را برای پرداختن به اشکال پیچیده‌تر محاسبات هموار می‌کند.

پیشرفت محاسبات عددی زمینه را برای محاسبات ماتریسی فراهم ساخت و در پی آن موتورهای گرافیکی و محاسبات رده‌بالاتر ظهور یافتند. به‌عنوان نمونه، یکی از مهم‌ترین الگوریتم‌های عصر ما تبدیل فوریۀ سریع (FFT) است. گیلبرت استرنگ ریاضیدان نامی آمریکایی، FFT را مهم‌ترین الگوریتم عددی دوران ما می‌داند، چرا که این الگوریتم روش ذخیره‌سازی، انتقال و دستکاری داده‌ها — از موسیقی گرفته تا تصاویر و ویدیوها — را در بستر اینترنت و دستگاه‌های دیجیتال دگرگون کرد. امروزه، وقتی با موسیقی دیجیتال سر و کار داریم، در واقع مستقیماً با امواج صوتی خام مواجه نیستیم، بلکه با لایه‌ای از محاسبات پنهان روبرو هستیم که داده‌ها را برای ما پردازش و بهینه می‌کنند.

بیایید لحظه‌ای در تاریخ محاسبات تأمل کنیم. در هر مرحله، بشر ابزارهایی پدید آورده که عملیات را خودکار کرده و ما را از انجام دستی آن‌ها بی‌نیاز می‌کنند. این ابزارها همگی از اصلی بنیادین پیروی می‌کنند: آن‌ها داده‌ها را فشرده کرده و در قالبی متراکم‌تر نمایش می‌دهند. گزاف نیست اگر بگوییم تاریخ محاسبات انسانی، در اصل، تاریخ فشرده‌سازی است.

امروزه وارد دورانی شده‌ایم که عمدتاً تحت سیطرۀ چیزی موسوم به هوش مصنوعی (AI) قرار دارد. با این حال، ماهیت این جهش فناورانه اساساً با پیشرفت‌های پیشین تفاوت اساسی ندارد. مدل‌های هوش مصنوعی در ذات خود ابزارهای تازه‌ای هستند که داده‌ها را در ابعادی بی‌سابقه فشرده می‌کنند. به‌عنوان نمونه، FFT یک تصویر را با تحلیل مؤلفه‌های فرکانسی آن فشرده می‌کند. به همین ترتیب، مدل‌های مدرنِ گفتار و تصویر نیز این اصل را، نه‌تنها بر یک تصویر یا کلیپ صوتی تنها، بلکه بر مجموعه‌های عظیمی از دیتاست ها اعمال می‌کنند. در خصوص مدل‌های زبانی نیز همین امر صدق می‌کند؛ این مدل‌ها در واقع تمامی زبان انسانی را در یک مدل واحد فشرده می‌سازند. هرچند مقیاس و پیچیدگی بیشتر شده، اما اصل زیرساختی — یعنی تجزیۀ طیفی (spectral decomposition) — تغییری نکرده است.

توان محاسباتی این مدل‌ها چنان گسترده است که گاه به نظر می‌رسد کاری نیست که از عهدۀ آن‌ها برنیاید. آن‌ها شعر می‌سرایند، مقالات علمی را خلاصه می‌کنند، پرونده‌های حقوقی را تحلیل می‌کنند، مسائل ریاضی را حل می‌کنند، دستور پخت غذا می‌سازند، رمان می‌نویسند و غیره و غیره. ممکن است حس کنیم به «آخر بازی» رسیده‌ایم؛ جایی که ماشین‌ها همۀ وظایف فکری را بر عهده گرفته‌اند و دیگر جایی برای نقش‌آفرینی انسان نمانده است. اما آیا واقعاً چنین است؟ چگونه به‌عنوان یک تمدن می‌توانیم همچنان پیش برویم وقتی به نظر می‌رسد دیگر کاری برای ما باقی نمانده است و غائله را به مشتی سیلیکون باخته ایم؟

خبر خوب این است که چنین برداشتی درست نیست. برای درک دلیل آن، بیایید نگاهی دقیق‌تر به چگونگی عملکرد مدل‌های زبانی بیندازیم. یکی از بزرگ‌ترین چالش‌های این مدل‌ها، پدیدۀ «توهّم» (hallucination) است؛ یعنی زمانی که مدل، اطلاعاتی کاملاً نادرست تولید می‌کند. برای مثال، ممکن است یک مدل زبانی بگوید: «پایتخت فرانسه برلین است»، که آشکارا اشتباه است. در حالی که با آموزش بیشتر می‌توان این توهّم را کاهش داد، این کار عمدتاً با کاهش آنتروپی مدل انجام می‌شود.

در اینجا، آنتروپی نشان‌دهندۀ میزان تصادفی بودن یا انعطاف‌پذیری مدل در انتخاب واژۀ بعدی است. هرچه آنتروپی بالاتر باشد، مدل در گزینش کلمه آزادی بیشتری دارد. مدل‌های زبانی از طریق نمونه‌گیری از یک توزیع احتمالاتی، متن تولید می‌کنند؛ به این معنا که در پاسخ به یک پرسش یکسان (prompt)، ممکن است خروجی‌ هر بار اندکی متفاوت باشد. همین تنوع است که امکان تعمیم و بیان یک مفهوم را به شیوه‌های مختلف فراهم می‌کند. اما این امر به یک بده بستان (trade off) بنیادین منتهی می‌شود:

- آنتروپی پایین‌تر به مدل دقیق‌تری می‌انجامد، اما به بهای کاهش خلاقیت و اکتشاف.

- آنتروپی بالاتر خروجی‌های متنوع‌تر و خلاقانه‌تر تولید می‌کند، اما احتمال بروز اطلاعات غلط یا بی‌معنا نیز افزایش می‌یابد.

این موضوع پیوند شگفت‌انگیزی میان خلاقیت و تصادفی بودن را نشان می‌دهد — رابطه‌ای که در تفکر انسان نیز وجود دارد. اما واقعاً مدل‌های زبانی بزرگ (LLM) نظیر ChatGPT تا چه اندازه آنتروپی دارند؟ شگفت اینکه این مدل‌ها برای جلوگیری از تولید اطلاعات غلط آنقدر آموزش دیده‌اند که آنتروپی آن‌ها از گفتار طبیعی انسان کمتر شده است — و مسئله دقیقاً از همینجا ناشی می‌شود. (پژوهش های زیادی این واقعیت را نشان می دهند که در گفتار دیگری به آن ها میپردازیم.)

ما انسان‌ها در گفت‌وگو، آزادی عمل بیشتری در انتخاب کلمات داریم و در عین حال می‌توانیم خود را تصحیح کرده و از خطاهایی که چنین مدلهایی به سادگی مرتکب می شوند، بپرهیزیم. افزون بر این، برخلاف مدل‌های هوش مصنوعی، ما تنها به متن ها متکی نیستیم. انتخاب واژگان ما تحت تأثیر عوامل گوناگون بیرونی و درونی است.

برای نمونه، تصور کنید فردی وارد یک میکده ی آلمانی می‌شود. یافته‌های روان‌شناختی حاکی از آن است که انسان‌ها گفتار خود را با محیط پیرامون‌شان تطبیق می‌دهند. در چنین شرایطی، شاید ناخواسته واژگانی را به کار ببرند که بیشتر با فرهنگ آلمانی همخوانی دارد. ولی این تنوع زبانی بسی فراتر می‌رود؛ پیشینه، سن، جنسیت، احساسات، شرایط اجتماعی و حتی رژیم غذایی می‌تواند به‌شکلی نامحسوس بر شیوۀ بیان ما اثر بگذارد.

برخلاف ماشین‌ها، ما موجوداتی زیستی هستیم که پیوسته با شبکه‌ای پیچیده از ورودی‌های حسی، عواطف و تجربیات زیسته سازگار می‌شویم. این غنای ارتباط انسانی — ریشه‌گرفته از پیش‌بینی‌ناپذیری، بافت و سازگاری — چیزی است که هوش مصنوعی، با وجود تمام توانایی‌هایش، هنوز نتوانسته است به‌طور کامل بازتولید کند.

مدل‌های زبانی بزرگ عموماً بر دقت و آنتروپی پایین متمرکزند تا خروجی‌هایی قابل پیش‌بینی و قابل اتکا داشته باشند. همین نقصان فضایی گسترده برای خلاقیت انسانی باقی می‌گذارد که هنوز خارج از دسترس هر مدل زبانی بزرگی است. همان‌طور که یک ماشین‌حساب، معنای واقعی ریاضیات را درک نمی‌کند و تنها عملیات از پیش تعیین‌شده را اجرا می‌کند، مدل‌های زبانی بزرگ نیز فاقد شهود هستند و صرفاً در سازمان‌دهی و پردازش اطلاعات یاری می‌رسانند.

هنگامی که از شهود سخن می‌گوییم، به چیزی مرموز یا ناملموس اشاره نمی‌کنیم. شهود فرایندی واقعی و ملموس است که از تجربۀ کل‌نگر و درک جامع ما از جهان ناشی می‌شود. این فرایند به ما امکان می‌دهد مفاهیمی ظاهراً بی‌ارتباط را به هم ربط دهیم، حتی زمانی که به‌طور خودآگاه از این ارتباط‌ها باخبر نیستیم. برای نمونه، یک مدل زبانی بزرگ هرگز نمی‌تواند حقیقتاً به رابطۀ بین دو موضوع ظاهرا بی ربط مانند «تولیدمثل زیستی» و «توپولوژی ریاضی» پی ببرد؛ کاری که می کند اما تنها بازگویی شباهت‌های سطحی است. توانایی ایجاد بینش‌های عمیق میان‌رشته‌ای، نیازمند تجربه‌ای از جهان است که فراتر از متن، کتاب یا مقالۀ پژوهشی است. چنین توانایی‌ای از تصاویری ذهنی، درک حسی، عواطف، تجربیات زیسته و تفکر انتزاعی ما نشئت می‌گیرد — عناصری که هیچ‌یک حقیقتاً در دسترس مدل‌های زبانی بزرگ نیستند.

انسان‌ها توانایی منحصربه‌فردی برای «توهّم خلاقانه» (creative hallucination) دارند و می‌توانند وارد فضاهای مفهومی شوند که مرز میان «معنا» و «بی‌معنا» در آن‌ها محو می‌شود. درست در چنین حوزه‌های مبهم و نامطمئنی است که ایده‌ها، اکتشافات و پارادایم‌های تازه شکل می‌گیرند. بزرگ‌ترین جهش‌های علمی اغلب به‌صورت پرش‌هایی در ساحت شهود های عجیب آغاز می‌شوند که ممکن است ابتدا بی‌معنا به نظر برسند اما در نهایت حقایقی عمیق را آشکار می‌کنند. در مقابل، مدل‌های زبانی بزرگ فاقد ظرفیت چنان جهش‌هایی هستند و صرفاً می‌توانند الگوهای موجود را بر اساس داده‌های آموزشی خود تقویت کنند.

با این همه، نباید مدل‌های زبانی بزرگ را به چشم رقیبی برای شهود نگریست؛ بلکه باید آن‌ها را ابزاری دانست که شهود را تقویت می‌کنند. همان‌طور که وایتهد پیشرفت تمدن را ناشی از واگذاری عملیات سطح پایین به ماشین‌ها توصیف کرد، ما نیز می‌توانیم وظایف روزمرۀ شناختی را به مدل‌های زبانی بزرگ بسپاریم و در عوض بر استدلال‌های عمیق‌تر مبتنی بر شهود متمرکز شویم. در اصل، هر عملیاتی در ذهن که هنوز نیازمند تلاش آگاهانه (یا غیر آگاهانه) است، نوعی شهود محسوب می‌شود. با پیشرفت فناوری، بسیاری از شهودهای کنونی ما نیز خودکار خواهند شد و ما را مجبور می‌کنند از نردبان تفکر و شهود یک پله بالاتر صعود کنیم.


ازاین‌رو، به جای هراس از اینکه هوش مصنوعی جایگزین تفکر انسانی شود، باید دریابیم که این فناوری ما را وامی‌دارد معنای تفکر، آفرینش و کاوش را دوباره تعریف کنیم. مرز شهود انسانی همواره در حال گسترش خواهد ماند و یک گام از خودکارسازی جلوتر خواهد ایستاد، تا زمانی که به جست‌وجوی ناشناخته‌ها ادامه دهیم.

شاید از این پست‌ها خوشتان بیاید